Semantically-Aware Strategies for
Stereo-Visual Robotic Obstacle Avoidance

Jungseok Hong], Karin de Langisz, Cole Wyeth3, Christopher Walaszek4, and Junaed Sattar’

Abstract— Mobile robots in unstructured, mapless environ-
ments must rely on an obstacle avoidance module to navigate
safely. The standard avoidance techniques estimate the locations
of obstacles with respect to the robot but are unaware of
the obstacles’ identities. Consequently, the robot cannot take
advantage of semantic information about obstacles when mak-
ing decisions about how to navigate. We propose an obstacle
avoidance module that combines visual instance segmentation
with a depth map to classify and localize objects in the
scene. The system avoids obstacles differentially, based on
the identity of the objects: for example, the system is more
cautious in response to unpredictable objects such as humans.
The system can also navigate closer to harmless obstacles and
ignore obstacles that pose no collision danger, enabling it to
navigate more efficiently. We validate our approach in two
simulated environments: one terrestrial and one underwater.
Results indicate that our approach is feasible and can enable
more efficient navigation strategies.

I. INTRODUCTION

An autonomous robot navigating an unstructured, mapless
environment typically avoids obstacles by utilizing range
information received from its sensors. When a danger of
collision arises, the robot adjusts its trajectory to ensure
safety. The state-of-the-art techniques in obstacle avoidance
effectively prevent collisions, but they are unaware of the
semantic properties of the obstacles they are avoiding [1].
Consequently, they are unable to exploit a more in-depth
understanding of the objects in the environment to navigate
more efficiently without compromising safety. In this paper,
we augment an obstacle avoidance module’s capabilities by
incorporating semantic information and show experimentally
that this results in more efficient navigation. We refer to this
augmentation as Semantic Obstacle Avoidance for Robots
(SOAR).

Semantic information is often used to aid robot navigation
in structured environments [2], [3]. In this work, we propose
that semantic information can also be useful for obstacle
avoidance in unstructured environments. For example, a
robot may want to consider that a living thing, like a person
or a dog, has the potential to start moving, even if it is
currently stationary. The robot may also want to consider that
some obstacles may not actually pose a collision danger: for

The authors are with
and Engineering,

the Department of Computer Science
Minnesota Robotics Institute, University of
Minnesota—Twin Cities, 100 Union St SE, Minneapolis, MN,
55455, USA. {' jungseok, 2dent 0019, *wyeth008,

*walas013,’ junaed}@umn.edu.

*This work was supported by the US National Science Foundation awards
1IS-#1637875 & 11S-#1845364, the UMII-MnDRIVE Fellowship, the MnRI
Seed Grant, and Nvidia GPU Grant.

“~diver: 1.00 2

“diver: 1.00

robot: 0.80

Fig. 1: Four levels of scene understanding in underwater
human-robot collaborative missions, shown top-to-bottom,
left-to-right: observation with no understanding (RGB im-
age), distance-aware observation without scene understand-
ing (depth estimation), instance-aware scene understanding
(instance segmentation), and depth-instance-aware scene un-
derstanding (depth-instance segmentation). We propose a
depth-instance-aware approach for obstacle avoidance.

instance, a depth map may detect plastic balls in the robot’s
direction of motion, but the robot can safely collide with
the balls. When the robot is able to recognize that different
objects pose different collision dangers, it can choose a path
that maximizes efficiency without jeopardizing safety. In fact,
semantic obstacle avoidance is desirable in several robotic
applications with unstructured environments, including:

« Robotic wheelchairs need to generally stay clear of
obstacles, but they may want to give extra clearance to
objects like doors that have the potential to suddenly
swing forward. On the other hand, if the user wants to
dock at a table, the wheelchair needs to allow itself to
get very close to it.

« Autonomous underwater vehicles (AUVs) are em-
ployed by marine biologists to observe endangered
species of mussels, which are usually embedded within
rock formations, requiring AUVs to get much closer.

« Diver-following AUVs need to avoid obstacles while
recognizing bubbles emanating from the diver’s flippers
do not actually pose a collision danger.

It is imperative to note that even if a map of the envi-
ronment is available, the presence of dynamic objects (e.g.,

Obstacle Avoidance Module Robot Navigation

Stereo Images

o

ﬁ |Semantic Obstacle Avoidance (SOAR)

Rectification
Disparity Computation

Instance Segmentation

Fig. 2: Tllustration of our obstacle avoiding approach which
fuses depth and semantic information for selective avoidance.
The input is a pair of stereo images, which is used to both
compute disparity and, through YOLACT, generate semantic
labels for obstacles in the scene. Fusing these, a robot
has both depth estimates and semantic information about
potential obstacles, enabling it to select navigation strategies
depending on the nature of the obstacle.

in the above scenarios, people, wheelchairs, and fish) will
require information beyond the “free-and-occluded” labels
that are usually provided by maps. Semantic maps [2]
and semantic scene understanding [4], [5], [6], [7] may
provide additional information, but they would not account
for dynamic objects in the environment. For field robots,
particularly in sensory-deprived environments (e.g., under-
water), such maps are often nonexistent, and real-time scene
understanding is still an open problem.

SOAR uses instance segmentation, which identifies spe-
cific object instances for each pixel in the visual scene,
and fuses it with depth (i.e., distance) information to pro-
vide semantically-aware obstacle information to obstacle
avoidance modules. We adopt YOLACT [8] as the instance
segmentation module for our pipeline, as shown in Fig.
2, because it is the first state-of-the-art model to run in
real-time with reasonable accuracy. While useful, object
detection is not appropriate for this task as bounding boxes
generated by these algorithms will contain spurious infor-
mation from scene background and other objects. While
semantic segmentation approaches are useful, they do not
discriminate between object instances, and this information
is needed for the proposed approach of semantically-aware
object avoidance.

In this paper, we make the following contributions:

 Propose a pipeline for combining depth estimation and
instance segmentation for semantic obstacle avoidance,

« Develop a semantically-aware obstacle avoidance algo-
rithm to keep flexible distances from objects,

« Create an instance segmentation dataset of underwater
obstacles to train an instance segmentation model, and

o Demonstrate the efficiency of the proposed pipeline in
both underwater and terrestrial simulated environments.

II. RELATED WORK

A. Instance Segmentation

Research in object detection has studied models to im-
prove accuracy while keeping real-time inference speed since
the appearance of YOLO [9], one of the first real-time object
detection models. However, instance segmentation poses
more complex challenges, and achieving good accuracy in
real-time has been difficult. FCIS [10] is the first end-to-end
CNN-based model for instance segmentation. It is built on R-
FCN [11] and utilizes position-sensitive inside/outside score
maps to generate instance segmentation proposals. Mask R-
CNN [12], which is an extension of Faster R-CNN [13],
performs segmentation in a two-stage process by generating
Region of Interest (Rol) proposals first and then creating
a mask based on the Rol from the first stage. PANet [14]
improves the accuracy of segmentation from Mask R-CNN
by enriching information propagation. MS R-CNN [15]
outperforms Mask R-CNN by adding a MaskloU head to
align the scores of the masks. Although the aforementioned
models show accurate results, their two-stage-based struc-
tures make real-time instance segmentation infeasible. In
order to overcome the structural problem, YOLACT [§]
conducts two predictions in parallel: mask prototypes and
per-instance mask coefficients. Then, the predictions are
combined linearly to yield masks. This allows a single-stage
structure and inference in real-time with reasonable accuracy.

B. Obstacle Avoidance

Obstacle avoidance, unsurprisingly, has seen significant
development (e.g., [16], [17], [18]) given its importance in
safe robot navigation. Here, we focus specifically on sensor-
based approaches where no information about the environ-
ment is available beyond what is received from sensors (see
[1] for a complete discussion). Sensor-based approaches typ-
ically plan a short-horizon trajectory at every time step [19],
[20]. A classic obstacle avoidance technique is the Artificial
Potential Field, first proposed by [21]. This technique assigns
artificial repulsive fields to obstacles and attractive fields
to goals, thereby guiding the robot toward a goal while
simultaneously avoiding obstacles. Other approaches include
vector field histograms (VFH) [22], receding horizon control
[23], and Voronoi diagrams [24].

Most obstacle avoidance that incorporates semantic infor-
mation is focused on developing socially-aware responses
to human obstacles, e.g., [25], [26], [27]. Similar to our
approach, [26] instructs the robot to avoid humans more
than inanimate objects. However, their work is focused on
path planning in mapped environments and uses model-based
methods to estimate the human’s location.

Another approach for obstacle avoidance in marine
robotics, based on conditional imitation learning, is presented
n [18]. This approach uses data collected from expert users
to learn what navigational action to take given an input
image, but does not explicitly model different behaviors for
different types of obstacles.

Fig. 3: Examples of labeled training images from our under-
water dataset showing three classes: diver, robot, and fin (the
colors for each class are randomly selected per image).

III. METHODOLOGY

The proposed approach incorporates both instance seg-
mentation and depth information to intelligently avoid obsta-
cles in unstructured and dynamic environments, with the goal
to optimize robot paths (e.g., in terms of distance traveled,
energy spent, and time taken) without compromising obstacle
avoidance capabilities. The system obtains object labels
and pixel locations from instance segmentation and fuses
the information with depth information to assign clearance
distances to obstacles.

A. Information Fusion using a Stereo Camera

We use a stereo camera as our only sensor to acquire (1)
pixel-level masks and labels of each object using instance
segmentation, and (2) depth information. Once both are
acquired, we fuse them to provide semantic information to
an obstacle avoidance module (see Fig. 2).

1) Instance Segmentation with Transfer Learning: We
choose YOLACT [8] as the base instance segmentation mod-
ule due to its real-time inference and competitive accuracy.
We use ResNet50-FPN as a backbone network for achieving
maximum inference speed since robots are likely to use
low-power computation units (e.g., an Nvidia Jetson TX2)
to perform semantic inference. We collect a total of 2,263
images, of which 1,682 are labeled with diver, robot, and fin
(i.e., diver’s flippers) classes; see Fig. 3 for training images
labeled using the Supervisely [28] tool. In addition, we use
581 images from the SUIM dataset [29] which has diver, fish,
and robot classes. We refine a pre-trained YOLACT model,
initially trained with the MS COCO dataset [30], with this
additional data.

2) Depth Estimation: Our depth estimation process is as
follows:

1) We perform stereo rectification to obtain a transform
matrix R, projection matrix P, and disparity-to-depth
mapping matrix Q for each camera using a camera

.
}:&
1ud

R o v

Fig. 4: Example trajectories of a robot around an obstacle
using the proposed approach. The repulsive potential 7 affects
the robot only if d < dy. The position of object O is
represented by a cross, the goal position G by a square, and
the position of robot R over time with stars. (left): when the
obstacle is not along the direct path from the robot to the
goal, it does not affect robot navigation. (right): the robot’s
direct path to the goal brings it closer than d; distance to the
obstacle; our algorithm forces the robot to circumnavigate
around it.

matrix K and distortion parameters D from each camera,
a rotation matrix R between the first camera coordinate
and the second camera coordinate, and a translation
vector T between two cameras.

2) Next, we remove distortion from each image using the
K, D, R, and P matrices.

3) After rectifying each pair of images, we run stereo
matching to generate a disparity map.

4) Lastly, we estimate the depth information from the
disparity map using Q.

B. Obstacle Avoidance

Our obstacle avoidance algorithm is inspired by the Ar-
tificial Potential Field (APF) method [21]. APF uses an
attractive potential f, to guide the robot toward the goal
and a repulsive potential f, to push the robot away from
obstacles. The attractive potential is calculated as:

Fu(x) = e(lx—xg1))

Here ¢ is a scaling constant, x is the current robot
position, and x, is the goal position. The repulsive potential
is calculated as

fi(x) = {n(ﬁ—dl_of if p(x) < dy

2
0 if p(x) > dy @

where 1) is a constant, p(x) is the closest obstacle to the
position x, and dj is the largest distance from the obstacle
at which the robot can sense the obstacle’s repulsive force.

In our approach, we determine dy based on semantic
information about the obstacles. For instance, we assign
dy = 0 for objects we can ignore (e.g., bubbles or sports balls)
while assigning a larger value for the objects (e.g., coral
reef, robots, people) we intend to avoid. In our approach,

(a) Terrestrial exploration with SOAR.

(c) Underwater exploration with SOAR.

(b) Terrestrial exploration without SOAR.

(d) Underwater exploration without SOAR.

Fig. 5: Samples from the terrestrial and underwater simulation tests. In Fig. 5a and 5b, the Turtlebot moves from the bottom
left corner to the upper middle area. In Fig. 5c and 5d, Aqua moves from the lower middle point to the middle of the arch.
Fig. 5a and 5c show that SOAR finds more efficient paths to explore environments while avoiding significant obstacles.

unlike APF, the robot navigates around the boundary of an
obstacle, keeping a constant distance of dj from the obstacle
(Fig 4). The circumnavigation behavior is similar to the
bug-2 navigation algorithm [31]. The robot, however, may
face the challenge of maintaining fixed distances (i.e., dg)
from obstacles when circumnavigating due to errors in state
estimation and external forces (e.g., surge for underwater
robots operating in open waters and wind for aerial robots).

We introduce two unit vectors, @ and 7, to implement the
circumnavigation with the concept of attractive and repulsive
potentials from APF. 4 points from the robot towards the
goal and 7 points from the robot to the obstacle. With the
two vectors, we update the robot’s direction of movement ¥
at any given point as follows:

if |x, —x| > dy
if |x,—x| =dy

. |a
p=1 . 3)
a+cicr
where c; is defined as a negative dot product between d
and 7, and ¢, is an additional factor to keep the distance dj
between the robot and the obstacle.

¢ =—a-F 4)

We introduce the constant ¢; to make ¥ perpendicular to 7
when the distance between the robot and the obstacle is dj.
However, due to the robot’s momentum, the robot may still

approach closer than d to the obstacle. We use the additional
factor c; to scale the repulsive component c¢;7 and to enforce
distance d from the obstacle:

L —x]+b (5)

Cy = do

Here x, is the obstacle position, x is the robot position, and
b is a constant greater than 1 that represents the maximum
value c¢;7 can be scaled by. ¢, scales inversely with the
robot’s distance to the obstacle, and obtains a value between
1 and b as we approach the obstacle.

IV. EXPERIMENTS AND RESULTS

The ongoing COVID-19 pandemic prohibited field trial
validations of the proposed method. However, we use re-
alistic simulation using ROS Gazebo [32] worlds for both
terrestrial and underwater cases to validate our algorithm.
Because our goal is local navigation of unstructured, mapless
environments, we choose goal points for each case with one
condition: the goal point should be something visible to the
robot when the robot is at its starting position if there is no
obstacle between the robot and the goal points. Additionally,
we use a mobile GPU (Nvidia Jetson TX2) with a stereo
camera (Intel RealSense) to evaluate the performance of our
model to mimic realistic robotic hardware.

TABLE I: Instance segmentation results (mAP) trained on our underwater dataset

all .50 .55 .60 .65 .70 15 .80 .85 .90 .95
box 71.14 | 91.96 | 90.29 | 89.48 | 87.89 | 84.09 | 79.54 | 75.20 | 62.56 | 39.07 | 11.29
mask | 69.38 | 93.72 | 93.51 | 92.14 | 90.47 | 85.64 | 81.71 | 69.39 | 55.94 | 29.55 1.71

A. Simulated Terrestrial Trials

We have created a terrestrial world in Gazebo, simulating
a parking lot environment. The scene was chosen to mimic a
robot attempting delivery or curbside pickup from a depart-
mental store, a relatively common occurrence in many parts
of the world under the Coronavirus pandemic. The world
has various types of objects, including sports balls, cars,
buses, people walking or standing, and tables. We evaluate
our model on a workstation equipped with an Intel i5-8600K
CPU and an Nvidia GTX 1080 GPU. We add a stereo
camera to a simulated Turtlebot robot to estimate depth
and infer instance segmentation. To validate our algorithm,
we intentionally block the shortest path from a robot to a
goal point with sports balls, as shown in Fig. 5a and 5b,
since we select the sports ball category as an object the
robot can safely run into (i.e., a not-an-obstacle object). The
Turtlebot starts from the bottom left corner of the world
and aims to reach the stop sign at the top. We use pre-
trained COCO weights with YOLACT for instance segmen-
tation. We use the modified APF-based obstacle avoidance
algorithm as described in Section III under two conditions:
receiving semantic information about obstacles (SOAR) and
without receiving any semantic information about obstacles
(non-SOAR). To measure the effectiveness of the semantic
obstacle avoidance approach, we measure the travel time
from a starting point to a goal point to evaluate each model’s
performance by running 10 tests for each case. We also note
the path chosen by the robot in each of the SOAR and non-
SOAR cases.

B. Simulated Underwater Trials

Our underwater world has been designed to mimic the
ocean floor environment, including corals, rocks, and fauna.
The world includes fish, robots, and an underwater rock
arch formation. As shown in Fig. 5c¢ and 5d, the arch
is blocked by fish and robots to test the efficacy of the
SOAR approach compared to non-SOAR. We select the fish
category as a not-an-obstacle object class. We simulate the
Aqua AUV [33], equipped with a stereo camera, to test
our model with both SOAR and non-SOAR algorithms. The
robot starts from the bottom of the world and aims to travel
through the arch to the other side of the rock formation.
We use the instance segmentation model trained on our
own dataset (as mentioned in Section III-A.1) with the four
classes (i.e., diver, robot, fish, and fin). The hardware and
trial configurations are unchanged from that of the terrestrial
case.

C. Results

We use both quantitative and qualitative evaluation to test
our semantic obstacle avoidance approach, as shown in Fig.

(a) Turtlebot : Segmentation

(b) Turtlebot : Disparity

fish: 0.072

(d) Aqua : Disparity

(c) Aqua : Segmentation

Fig. 6: Instance segmentation and disparity estimation from
the view of robots. Fig. 6a and 6b are captured from the
Turtlebot in the terrestrial world, and Fig. 6¢c and 6d are
from the Aqua robot in the underwater world.

5 and Table II. Vision algorithms are implemented using the
OpenCV [34] library.

1) Instance Segmentation: We train the instance seg-
mentation model on a dataset of underwater imagery we
collected, and also one that is openly available, as mentioned
in Section III-A.1. We train for 800,000 epochs which took
five days on an Nvidia Titan XP GPU. Table I shows the
average mAP (Mean Average Precision) score over IoU
(Intersection over Union) thresholds from 0.50 to 0.95. With
higher accurate localization (higher IoU thresholds), the
mAP values decrease. Overall, the mAP values of bounding
boxes are slightly higher than those of segmentation masks.

2) Simulated Terrestrial Trials: We achieve = 20 fps while
simultaneously running simulation and algorithms on the
Nvidia Titan XP GPU. Table Ila shows the average travel
time (in simulation time) from the starting point to the goal
for both SOAR and non-SOAR algorithms. Although both
algorithms can reach the goal, the non-SOAR algorithm
takes 14% longer time than when using SOAR. Samples
from each case are shown in Fig. 5a and 5b. Fig. 6a
and 6b show how Turtlebot understands scenes during its
exploration. The SOAR algorithm reduces travel time by
utilizing non-obstacle information (i.e., sports ball) obtained
from the instance segmentation model. This demonstrates
how instance segmentation information can assist in efficient
exploration while safely avoiding obstacles. Information
from bounding box detection and semantic segmentation is

TABLE II: Terrestrial and Underwater Simulation Trial Re-
sults

SOAR non-SOAR
Travel time(s) | Goal | Travel time(s) | Goal
1 89 v 99 v
2 93 v 98 v
3 83 v 120 v
4 90 v 99 v
5 87 v 100 v
6 85 v 98 v
7 90 v 101 v
8 88 v 97 v
9 87 v 98 v
10 89 v 101 v
Avg 88.1 101.1
(a) Turtlebot
SOAR non-SOAR
Travel time(s) | Goal | Travel time(s) | Goal
1 74 v 97 X
2 69 v 75 X
3 73 v 88 X
4 70 v 120 X
5 69 v 91 X
6 68 v 94 X
7 70 v 122 X
8 72 v 111 X
9 70 v 111 X
10 74 v 99 X
Avg 70.9 100.8
(b) Aqua

not sufficient to provide detailed information for a robot to
explore environments, particularly with intra-class occlusion.

3) Simulated Underwater Trials: As our Gazebo world
uses detailed hydrodynamic effects for the underwater sim-
ulation, we obtain = 10 fps during our tests. Unlike the
terrestrial case, the non-SOAR algorithm fails to reach the
goal, as seen in Table IIb. This is because we terminate
the non-SOAR algorithm in the following cases: 1) Aqua
is heading in the wrong direction, 2) Aqua is stuck between
rocks, and 3) it takes too long (= 2 minutes) to reach the
goal. Sample cases from each scenario are captured in Fig.
5c and 5d. The cyan-colored robots shown are “obstacles”,
and immobile, to simulate a moving Aqua robot (silver/red
colors) avoiding other robots in the field. With the SOAR
algorithm, Aqua is able to reach the goal (i.e., under the
arch) by ignoring the group of fish. The system ignores them
because of the semantic knowledge that fish do not present a
collision danger. Fig. 6¢ and 6d show a snapshot of Aqua’s
view from the trials. The results show that for underwater
domains, obstacle avoidance without understanding the scene
could significantly extend the travel time at best and fail to
reach the goal at worst.

4) Bench Test: We achieved = 5 fps inference speed while
running the SOAR algorithm on the Jetson TX2. We expect
to achieve faster inference speed in more capable mobile
platforms (e.g., AGX Xavier).

5) Limitations: When the inference produced by instance
segmentation incorrectly classifies an obstacle as a non-
obstacle, a collision can occur. Additionally, the inference

time needs to be sufficiently fast to capture the objects’
motion. In other words, if an object moves far faster than
the inference speed, it could cause the obstacle avoidance
algorithm to fail.

V. CONCLUSIONS

In this paper, we propose an obstacle avoidance algorithm
that incorporates both instance segmentation and depth infor-
mation to perceive its surroundings from only a pair of stereo
image as input. We are able to use the instance segmentation
labels to inform a robot about which visible obstacles in
its environment should be either avoided or ignored. Fi-
nally, we present the SOAR algorithm as a viable way to
explore unstructured environments with the obtained visual
information. We validate our algorithm on both terrestrial
and underwater simulations; quantitative results show that
our algorithm can lead to efficient and intelligent robotic
navigation decisions in unstructured environments, which can
result in extending the duration of robot operations.

We plan to extend this work in multiple directions. First,
we intend to integrate a sonar sensor with the camera to make
SOAR robust to poor visibility conditions. Sonar readings
will be used to provide additional information about obstacle
locations. Visual data will be exploited to fine-tune a robot’s
motion when the robot approaches obstacles in close prox-
imity. Additionally, we will improve instance segmentation
by reducing the model size and inference time; training the
model with increasing the size of the dataset; and optimizing
it. Lastly, we plan to implement of the proposed algorithm
on a robotic platform for actual in-the-field validation.

REFERENCES

[1] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments:
a survey,” Robotica, vol. 33, no. 3, pp. 463-497, 2015.

[2] 1. Kostavelis and A. Gasteratos, “Semantic mapping for mobile
robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 60,
pp- 86-103, 2015.

[3] C. Galindo, J.-A. Ferndndez-Madrigal, J. Gonzdlez, and A. Saffiotti,
“Robot task planning using semantic maps,” Robotics and Autonomous
Systems, vol. 56, no. 11, pp. 955-966, 2008.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

[5] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated recognition, localization and detection
using convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

[7]1 P.O. Pinheiro, R. Collobert, and P. Dolldr, “Learning to segment object
candidates,” in Advances in Neural Information Processing Systems,
2015, pp. 1990-1998.

[8] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: real-time
instance segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 9157-9166.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016.

[10] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 2359-2367.

[11] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via
region-based fully convolutional networks,” in Advances in neural
information processing systems, 2016, pp. 379-387.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91-99.

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8759-8768.

Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring
R-CNN,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 6409-6418.

S. Rahman, A. Q. Li, and I. Rekleitis, “SVIn2: An Underwater SLAM
System using Sonar, Visual, Inertial, and Depth Sensor,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, 2019, pp. 1861-1868.

M. Xanthidis, N. Karapetyan, H. Damron, S. Rahman, J. Johnson,
A. O’Connell, J. M. O’Kane, and I. Rekleitis, “Navigation in the
Presence of Obstacles for an Agile Autonomous Underwater Vehicle,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2020, pp. 892-899.

T. Manderson, J. C. G. Higuera, S. Wapnick, J.-F. Tremblay, F. Shkurti,
D. Meger, and G. Dudek, “Vision-Based Goal-Conditioned Policies
for Underwater Navigation in the Presence of Obstacles,” in Robotics:
Science and Systems, Corvalis, Oregon, USA, July 2020.

A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3d exploration,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2016, pp. 1462-1468.

M. Hoy, A. S. Matveev, and A. V. Savkin, “Collision free cooperative
navigation of multiple wheeled robots in unknown cluttered environ-
ments,” Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1253—
1266, 2012.

O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous Robot Vehicles. Springer, 1986, pp. 396—404.
J. Borenstein, Y. Koren, et al., “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 278-288, 1991.

P. Ogren and N. E. Leonard, “A provably convergent dynamic window
approach to obstacle avoidance,” IFAC Proceedings Volumes, vol. 35,
no. 1, pp. 115-120, 2002.

E. Masehian and M. Amin-Naseri, “A Voronoi diagram-visibility
graph-potential field compound algorithm for robot path planning,”
Journal of Robotic Systems, vol. 21, no. 6, pp. 275-300, 2004.

A. F. Foka and P. E. Trahanias, “Probabilistic autonomous robot
navigation in dynamic environments with human motion prediction,”
International Journal of Social Robotics, vol. 2, no. 1, pp. 79-94,
2010.

E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human
aware mobile robot motion planner,” IEEE Transactions on Robotics,
vol. 23, no. 5, pp. 874-883, 2007.

B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson,
J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-
based prediction for pedestrians,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2009, pp. 3931—
3936.

Supervisely - Web platform for computer vision. Annotation, training
and deploy. [Online]. Available: https://supervise.ly/

M. I. Robotics and V. Laboratory, Segmentation of Underwater Im-
agery Dataset, http://irvlab.cs.umn.edu/resources. Accessed 10-
31-2020.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft COCO: Common Objects
in Context,” in European conference on computer vision. Springer,
2014, pp. 740-755.

V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, vol. 2, no. 1, pp. 403-430, 1987.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“ROS: An Open-Source Robot Operating System,” in ICRA
Workshop on Open Source Software, 2009. [Online]. Avail-
able: http://publ.willowgarage.com/ konolige/cs225B/docs/quigley-
icra2009-ros.pdf

[33] G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L.-A.

Torres-Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman, et al.,
“Aqua: An amphibious autonomous robot,” Computer, vol. 40, no. 1,
pp. 46-53, 2007.

[34] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.

