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Abstract— Deep neural networks are the leading solution to
the object detection problem. However, challenges arise when
applying these networks to the kind of real-time, first-person
video data that a robotic platform must process: specifically,
detections may not be consistent from frame to frame, and ob-
jects may frequently appear at viewpoints that are particularly
challenging for the model, resulting in inaccurate detections.
In this paper, we present our approach for addressing these
challenges for our particular vision problem: diver detection
onboard autonomous underwater vehicles (AUVs). We begin
by producing and releasing a dataset of approximately 105,000
annotated images of divers sourced from videos in order to
address the challenge of learning a wide variety of object
rotations and translations. This is one of the largest and most
varied diver detection datasets ever created, and we compare
models trained and tested on both our dataset and a previous
dataset to demonstrate that our dataset improves the state-of-
the-art in diver detection. Then, in order to choose an object
detection model that produces detections that are consistent
from frame to frame, we evaluate several state-of-the-art object
detection models on the temporal stability of their detections in
addition to the typical accuracy and efficiency metrics, mean
average precision (mAP) and frames per second. Importantly,
our results showed that models with the highest mAP do not
also have the highest temporal stability.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are invaluable
tools with great potential in advancing underwater science
and engineering. AUVs serve oceanographers and marine
biologists by charting biological habitats [1] and marine geol-
ogy [2], observing climate change underwater [3], inspecting
and repairing undersea infrastructures such as pipelines or
cables [4], and helping to control invasive species [5]. Many
of these applications require AUVs to work alongside and
aid human workers underwater by carrying loads, recording
data, or mapping environments while the human does other
critical work. A key capability of an AUV intended to work
alongside humans is diver detection: an AUV must have an
understanding of where humans are in order to safely move
in the environment, communicate with its operator, or follow
a human to a location. Diver detection is typically achieved
through deep neural networks for object detection.

Deep neural networks [6], particularly single-frame con-
volutional neural networks (CNNs), have achieved great suc-
cess in many object detection applications in the underwater
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Fig. 1: A diver operating an Aqua AUV in Barbados.

space, including diver detection [7], coral identification [8],
fish species identification, and trash detection [9]. However,
not enough has been done to address the diver detection prob-
lem in terms of the practical considerations of deployment
on robots. In a robotic deployment, these detectors will be
operating in the context of a video stream, with consequences
to missed detections (e.g., becoming separated from the diver,
swimming in the wrong direction, etc).

CNNs, despite their strong performances on benchmark
vision datasets, have been shown to struggle at times with
images from video streams [10], [11], [12], [13]. This is par-
ticularly problematic for robotic applications, where vision
mistakes have physical consequences [14]. There are several
factors that explain this phenomenon, which are discussed in
more detail in Section II. In short, videos present objects at
a wide variety of translations and rotations, and CNNs can
struggle to generalize to the full range of translations and
orientations found in video data [15], [16].

Most previously presented diver detection systems achieve
relatively high accuracies in the single image sense, but in
our work, we have observed that these metrics can hide a
tendency for instability in detection bounding boxes when
viewed in a temporal context: the diver may be detected in
one frame and undetected in the next or the diver’s bounding
box may have an inconsistent position or scale (relative to
the ground truth) from frame to frame, making it difficult
to build an accurate understanding of the diver’s location.
The simplest applications of diver detection, diver follow-
ing, can often make do with low-stability detections. Other
human-robot collaboration capabilities “down the pipeline,”
however, such as gesture detection, attention and intention
detection, and action recognition may not be able to cope
with bounding boxes which frequently change in scale and
position, or simply fail to reliably detect a given diver. In



this paper, we address these challenges by (1) creating a
large dataset of divers sourced from videos in order to learn
more diver poses and rotations, and (2) analyzing detector
performance not just in terms of traditional accuracy and
efficiency metrics, but also in terms of stability metrics.

Specifically, we create and release the Video Diver Detec-
tion dataset (VDD-C̄1), a large dataset comprised of approxi-
mately 105, 000 fully annotated images of divers, drawn from
videos taken in pool and field environments. (The dataset
can be found at http://irvlab.cs.umn.edu/vddc.) This dataset
improves on previous datasets in size (approximately 17
times more images than our previous work [7]), but also
by providing images in video context, allowing for analysis
of the temporal stability of single-image detectors, and also
allowing models to learn a wider variety of diver translations
and rotations. We then train a variety of single-image object
detection networks on this dataset, as well as one video
object detection network, and evaluate them all. In order to
build a full picture of their capabilities, we evaluate each
network not only in terms of traditional accuracy metrics
such as precision and recall, but also on a number of video
stability metrics and in terms of their inference speeds on
embedded platforms.

Contributions In this paper we present our approach to
addressing shortcomings in our diver detection models:

• We create, process, and release a 105, 000 image dataset
of fully annotated videos of divers.

• We demonstrate that this dataset improves the state-of-
the-art of diver detection over our previous dataset.

• We analyze several state-of-the-art deep models in terms
of not only their accuracy and efficiency, but also in
terms of their stability over sequential frames. In partic-
ular, we demonstrate that detectors with high accuracy
do not necessarily have high temporal stability.

II. RELATED WORK
Object detection is a computer vision task that involves

identifying and localizing objects. Convolutional neural net-
works (CNNs) are by far the highest performing object
detection models [17], [18] and can generally be divided
into two groups: two stage region-based detectors, which
propose object regions in stage one and extract features from
these regions in stage two (e.g., Region CNN [19] and its
descendants Fast R-CNN [20], Faster R-CNN [21], Region
FCN [22], Mask R-CNN [23]), and one stage grid-based
detectors, which skip the region proposal step and instead
extract features over a dense, static grid of possible object
locations in the image (e.g., SSD [24], YOLO [25]). One
stage detectors are less accurate but fast enough for realtime
inference, while two stage detectors are more accurate but
often unsuitable for realtime deployment.

State-of-the-art CNNs perform impressively well on vision
benchmarks. However, these CNNs can stumble on images
that come from a video stream [10], [11], [12], [13], which
is particularly problematic for robotic applications [14].

1C̄ is the Roman numeral for 100,000, denoting the number of images.

Research investigating this phenomenon points to multiple
reasons behind this performance deficit. One issue is that
as objects move in a video, they appear at a variety of
locations. Image translations as small as one pixel can result
in a radically different image representation at the deepest
layers of state-of-the-art CNNs [10], which means that CNNs
can struggle to generalize to the wide range of translations
seen in video data. In fact, even small translations of input
images can be effective adversarial attacks on CNNs [10],
[15], [26]. It is also important to note that CNNs are often
trained on datasets like ImageNet [27] that have demonstra-
ble location bias: the photographed objects’ locations are
not equally distributed throughout the dataset, and traditional
data augmentation strategies do not sufficiently address this
problem [10], [15].

Similarly, objects in videos appear in a variety of orienta-
tions, which is also challenging for CNNs. Datasets typically
present relatively head-on views of objects, whereas videos
typically capture objects from a wide range of vantage points
[16]. There is significant evidence that state-of-the art object
detectors generalize very poorly to certain rotations [15],
[16].

Learning to detect objects well in video is motivated by
many applications, from robotics to surveillance. Since the
release of ImageNet VID [28] in 2015, researchers have
developed many models for video object detection. These
detectors can learn to exploit temporal information in video
streams in order to make better detections on video data,
and they typically outperform static image detectors on video
datasets [29]. Video detectors utilize a variety of strategies
for leveraging temporal information, most notably linking
static detections across frames in tracklets/tubelets [30],
optical flow [31], and spatio-temporal feature memory [32],
[33], [34]. However, many video detectors cannot perform
inference in real time, making them unsuitable for robotic
applications. Most realtime-capable video detectors (e.g.,
[29], [35], [33]) achieve faster speeds by focusing intensive
computational efforts on periodic “key frames” and propagat-
ing some of these computed features to subsequent frames,
rather than computing features for every single frame.

Evaluation metrics are under-studied in video object de-
tection. Video object detectors are typically evaluated with
the same metrics used for static images detectors, e.g., mean
average precision (mAP). Notably, these metrics do not take
into account the temporal nature of video data. Recently
some metrics [36], [37] have been proposed that evaluate
video detectors not only on mAP, but also on the stability
of bounding box location and scale for a given object across
frames (i.e., how much the bounding box jitters around the
ground truth) and on how fragmented detections are for each
object in the video (i.e., during the duration of an object’s
presence in the video, how many times does an object’s
status change from “detected” to “undetected”), although
these metrics have not yet been widely adapted.

Diver detection is of significant interest to researchers
in marine robotics, and previous work has collected vari-
ous diver datasets for the purpose of diver detection. The

http://irvlab.cs.umn.edu/vddc


Fig. 2: The EVA labeling tool.

(a) Unlabeled (b) Labeled

Fig. 3: An image from VDD-C̄, with and without labels.

Cognitive Autonomous Diving Buddy (CADDY) project is
a broad collection of data for underwater vision research that
includes a diver pose estimation dataset and a diver gesture
recognition dataset [38], [39]. [40] develop a diver detection
algorithm that uses nearest-class-mean random forests.

III. DATASET CREATION AND PROCESSING

Our previous work produced a small dataset of images
of divers in various environment [7]. This dataset will be
referred to in this paper as the Deep Diver Dataset (DDD).
Our motivation to create a new dataset that improved upon
the existing DDD dataset stems from the following reasons:

(i) DDD is a relatively small dataset from a deep learning
perspective, with 6, 011 images in its training set.

(ii) While many of the images are from videos, the orga-
nization of the dataset does not lend itself to temporal
stability testing or training video detection methods.

(iii) The majority of the training images are biased to the
application of diver following: a single diver swimming
away from the camera is a common image.

To address these shortcomings, we present a new dataset,
the Video Diver Detection dataset (VDD-C̄), available at
http://irvlab.cs.umn.edu/vddc.

A. Source Data

With the goal of temporal stability testing and video de-
tection in mind, we chose to create our dataset out of videos,
extracted into images at a rate of 20 frames per second for
annotation. The majority of the videos were from dives off
the coast of Barbados in the Caribbean Sea, but a sizeable
number of videos were taken in pool environments. The
percentage of the dataset containing images from different
environments (ocean/pool), images featuring different diver
gear types (scuba/flippers/no gear), and images allocated
to training, test, or validation sets is visualized in Figure
4 for VDD-C̄ (4a - 4c) and DDD (4d - 4f). Note that

(a) Video Location (b) Type of swimmer (c) Train/Test/Val

(d) Video Location (e) Type of swimmer (f) Train/Test/Val

Fig. 4: Distribution of VDD-C̄ (a-c) and DDD (d-f) data.

the the Figure shows percentages rather than number of
frames. For instance, while a smaller percentage of VDD-
C̄’s total data is from pool environments, it has nearly three
times as many images of pool environments (16, 657) as
DDD has images of any type. Additionally, while there
is less variety in what equipment divers are wearing, a
much wider array of viewpoints are represented: divers were
recorded swimming with or without a robot, viewed from
many different angles, and sometimes merely treading water.
Analysis of bounding box centroid location (Figure 5) clearly
shows the greater variety in diver locations present in our
new dataset. In comparison to previous datasets, our VDD-
C̄ dataset is more numerous, contains a sufficient amount
of diver and environment variation, and has a much wider
range of viewpoints and diver activities represented.

B. Labeling Process

Once the videos for the dataset had been selected and
extracted to frames, the task of labeling them was addressed.
Labeling 105, 000 images one by one was a difficult and
time-consuming task, but it was improved by our choice
of labeling tool. We used EVA [41], a web-based tool for
labeling video data, shown in Figure 2. EVA is a rebuild of
the popular Beaver-Dam tool, with the addition of tracking
capabilities. Annotation is completed normally for the first
frame in a video, with a user drawing a bounding box
around every object they wish to label (Figure 3). Then, the
user clicks the track button, and the initial annotations are
used to initialize a Kernelized Correlation Filter tracker [42]
which propagates those bounding boxes over the following
frames. Depending on the difficulty of the tracking, the
generated bounding boxes need to be adjusted and re-tracked
somewhere between every frame and every 30 frames.

C. Post-Processing

With the initial labels generated, we began post-processing
our data, beginning with a significant proofreading effort.
To proofread, we watched every labeled video from start
to finish to look for labeling errors, and we then corrected
all observed labeling errors. Following the correction of
these errors, a number of sections of video were cut due to
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(a) Deep Diver Dataset (b) VDD-C̄
Fig. 5: Distribution of bounding box centers.

significant motion blur or degradation of the visual quality.
Additionally, any frame in a pool video which contained
no diver was cut, as these frames were almost entirely
from portions of the video with the camera out of water.
A significant number of images were cut, bringing the total
number of images down from approximately 114, 000 to the
105, 000 images previously mentioned. Finally, the exported
annotations were automatically filtered for bounding box co-
ordinates out of the acceptable range of the image size before
being converted to YOLO [43]-style labels, TFExample [44]
and TFSequence [45] records.

IV. DETECTION MODELS

We trained four models (some with a few variants) on
VDD-C̄ with the aim of answering the following questions:

1) Do models trained on VDD-C̄ generally perform better
on both the VDD-C̄ and DDD test sets than models
trained on the DDD dataset?

2) Do models with the highest accuracy (as measured by
mAP) also have the highest temporal stability?

In the following sections we briefly explain these models,
along with the training process we used for each, and any
variants for which we report results.

A. Faster R-CNN

Faster R-CNN [21] is a two-stage object detector in the
R-CNN family and a staple high accuracy object detector.
Although it is not fast enough for use on a robotic platform,
we chose to train this model to loosely represent a “top end”
accuracy of state-of-the-art CNNs on our dataset. We utilize
the Tensorflow Object Detection API [46] and its Faster R-
CNN with an Inception-ResNet-v2 [47] feature extractor for
training. Two hyperparameters, learning rate and batch size,
were tuned with the validation set.

B. SSD with Mobilenet

SSDs [24] are among the most accurate real-time object
detectors and therefore are good candidates for eventual
deployment on a robotic platform. We train SSD320 (i.e.,
SSDs for inputs sized 320 × 320) models with multiple
Mobilenet [48] backbones to find the optimal model for our
use case. We utilize the Tensorflow Object Detection API and
the provided models for training. Learning rate and batch size
were again tuned with the validation set.

C. YOLO

You Only Look Once (YOLO) [43] is a well established
object detection model, valued for its high accuracy and
speed. YOLO predicts a set of bounding boxes in a grid
across the image, with confidences for each, and class proba-
bilities for each grid box, matching class probabilities to the
boxes with the highest confidences. We evaluate a variety
of versions of YOLO (v2 [49] and v4 [50]) in this work,
although YOLOv4 is our primary version for comparing
with other networks. For every version of YOLO we train,
we also train Tiny-YOLO, which reduces the number of
convolutional layers and filters to improve the inference
runtime of the network. To train these networks, we fine-
tune them using initial weights trained on Imagenet.

D. LSTM-SSD

The only video object detection network evaluated in
this work is the LSTM-SSD detector proposed by Liu and
Zhu [29]. This model is based on Mobilenet SSDs, but
adds a number of Bottleneck LSTMs [29] after the feature
extraction network, followed by output layers. On the next
frame’s inference, features extracted by the convolutional
layers will be combined with the LSTM’s state, propagating
feature maps through time. In order to train the LSTM-SSD,
we initialize the convolutional portion of the network from a
fine-tuned MobileNetV1 SSD, then train the LSTM portion
of the network in order to improve the feature propagation.

V. TEMPORAL STABILITY

In robotic applications, it is often desirable to have tem-
poral stability for object detections. That is, detections for a
given object should be stable over time with respect to:

• Translation. If detected bounding boxes are not consis-
tently located with respect to the ground truth bounding
boxes from frame to frame, it is difficult to estimate the
object’s location and trajectory.

• Scale and aspect ratio. Similarly, if detected bounding
boxes have inconsistent scales and aspect ratios, it is
difficult to estimate the object’s location and trajectory.

• Fragmentation. For any given diver that appears in the
video, the diver should be consistently detected (i.e., the
object should not be undetected in one frame, then de-
tected in the next, and so on). At worst, fragmentations
make it difficult for the robot to confidently determine
that the object is present, and at best, they increase
uncertainty of estimations of the object’s location.

We adapt methods from [36] and [37] to evaluate diver
detectors with respect to these three aspects of temporal
stability. As in [37], we do not have ground truth tracks
for the divers in our dataset and therefore computationally
calculate ad-hoc tracklets for each diver by matching ground
truth annotations from frame to frame with intersection over
union (IOU) as in [51]. Using these tracklets, we then
calculate the stability metrics from [36] as follows:



Trained on VDD-C̄ Trained on DDD

Tested on VDD-C̄ Tested on DDD Tested on VDD-C̄ Tested on DDD

Model AP50 AP75 IOU AP50 AP75 IOU AP50 AP75 IOU AP50 AP75 IOU

SSD(MobileNetV2) 82.43 41.07 39.61 90.12 33.09 65.14 69.14 25.61 45.73 85.90 19.8 65.80
SSD(MobileNetV3-Small) 81.43 34.03 29.50 60.20 11.10 58.50 60.24 11.10 31.23 83.90 17.46 65.80
SSD(MobileNetV3-Large) 88.47 44.16 40.42 91.29 27.94 66.21 77.01 26.19 40.01 89.81 30.20 65.85
YOLOv2 86.73 38.04 68.25 93.30 23.89 68.19 76.27 19.3 60.92 87.84 21.93 68.76
YOLOv2-Tiny 72.69 8.82 59.48 63.50 3.14 60.12 66.51 6.17 55.47 81.95 3.27 63.95
YOLOv4 83.65 34.13 64.16 81.38 21.64 71.13 70.47 20.86 59.25 91.57 18.23 71.13
YOLOv4-Tiny 81.93 34.7 58.82 92.15 26.26 68.00 75.56 19.43 57.83 84.41 11.44 73.56

TABLE I: Comparison between performance on test sets of the VDD-C̄ and DDD with training on either train set.

1) Translation error: The translation error of each track-
let’s detection is measured with the center position error
ec. To calculate ec, for each detection d in the tracklet,
we find the standard deviation of the distance between the
normalized center x bounding box coordinate, xd, and the
normalized ground truth xg . We do the same for the yd
and yg coordinates. The translation error is the mean of
these standard deviations across all tracks. Formally, for each
tracklet t:

ec(t) = σ(xd − xg) + σ(yd − yg),∀d ∈ t

Then the detector’s overall translation error is

1

N

N∑
t=1

ec(t)

2) Scale and aspect ratio error: For each detection, the
aspect ratio error is defined as the ratio between the bounding
box aspect ratio and the ground truth aspect ratio. The scale
error is defined as the square root of the bounding box area
over the ground truth area. To find the scale and aspect
ratio error, we find the average standard deviations of each
track’s summed scale error es(t) and aspect ratio error er(t).
Formally, for each tracklet t:

es(t) = σ

(√
wdhd
wghg

)
,∀d ∈ t

er(t) = σ

(
wd

hd
/
wg

hg

)
,∀d ∈ t

esr(t) = es(t) + er(t)

Then the detector’s overall scale and aspect ratio error is

1

N

N∑
t=1

esr(t)

3) Fragmentation error: For each track, we count the
number of fragments as the number of times the track’s status
changes from detected to undetected or vice versa. Then the
fragmentation error is the average number of fragments f
per track, normalized by track length l:

1

N

N∑
t=1

ft
lt − 1

Because the translation and scale metrics rely on standard de-
viations of a tracklet’s detections, they become meaningless

for tracklets with only one detection. Our analysis therefore
excludes any tracklets with only one detection.

VI. RESULTS

A. Dataset Comparisons

To quantify how effective the new VDD-C̄ dataset is in
training deep vision models compared to previous datsets,
we train one version of each SSD and YOLO variant on the
VDD-C̄ dataset and a second version on the existing DDD
dataset. (We do not train Faster R-CNN or LSTM-SSD on
DDD, since these models are not likely to be deployed and
training is time- and resource-intensive.) We then compare
the models’ respective performances on each test set as
shown in Table I. Results show that models trained on VDD-
C̄ outperform those trained on DDD on both the VDD-C̄ test
set and, to a lesser extent, the DDD test set. These results
support our expectations that VDD-C̄’s more complex data
will lead to more successful detectors, because the VDD-C̄
trained models outperform the DDD-trained models with few
exceptions. Additionally, the fact that our VDD-C̄ dataset is
more challenging is reflected in these results, as DDD-trained
detectors perform more poorly on the VDD-C̄ test set than
they do on the DDD test set.

B. Average Precision and IOU

To evaluate the accuracy of each model, we calculate
the average precision (AP) of each model on diver identi-
fication. The average precision is found by evaluating the
model’s precision at different recall values. Specifically,
since models output a confidence score for each detection,
model recall values can be manipulated by changing the
confidence threshold required for a detection; the AP is the
weighted mean of the model’s precision values at each recall
value, where the weight for the recall at a given confidence
threshold is the increase in recall from the previous threshold.
Note that since our models are only trained to identify divers,
the diver AP is equivalent to the mean average precision
(mAP), which is a widely used object detection metric [18].
For each model, we pick a confidence threshold that results
in the best precision and recall scores. Using that confidence
threshold, we calculate AP at IOU thresholds of 0.5 and 0.75,
average IOU, and an average of APs with thresholds between
0.5 and 0.95 with a step size of 0.05 (0.5-0.95).



Model AP AP50 AP75 IOU

Faster R-CNN 55.50 90.18 60.50 49.81

SSD(MobileNetv2) 43.45 82.43 41.07 39.61
SSD(MobileNetv3-Small) 39.81 81.43 34.03 29.50
SSD(MobileNetv3-Large) 47.05 88.47 44.16 40.42
YOLOv4 41.01 83.65 34.13 64.16
YOLOv4-Tiny 33.39 81.93 34.70 58.81
LSTM-SSD 39.00 79.80 33.10 51.40

TABLE II: Precision and IOU.

Fig. 6: Measured stability errors for different models.

C. Stability Results

The average translation, scale, and fragment errors across
all diver tracklets are calculated for each model using the
equations discussed in Section V. Most of the models
perform very similarly with respect to translation error and
scale error, with the exception SSD-MobilenetV3-L, whose
errors are higher than the other models’. Fragmentation error
varies more across models. The YOLOv4 and YOLOv4-
tiny models have the lowest fragmentation errors, despite not
having the highest AP. Notably, while the LSTM-SSD and
SSD-Mobilenets have comparable AP, the LSTM-SSD has
a lower fragmentation error, indicating that it outperforms
SSD in detecting divers consistently. Finally, we note that
despite SSD-MobilenetV3-L having the highest AP, it also
has the highest scale and aspect ratio error and the second
highest fragmentation error, which suggests that it may not
be the best choice for deployment.

D. Efficiency Results

YOLO, SSD, and LSTM-SSD are high speed models
designed for real-time inference use cases. While Faster R-
CNN has demonstrated high accuracies, it is computationally
involved, and is not quite suitable for real-time inference as
shown in [7]. In order to quantify the usability of our real-
time models on robotic platforms, we quantify their inference
run-time in terms of frames processed per second (FPS). The
results of these tests can be seen in Table III. Due to the size
of the test dataset, we only tested a portion of the test set
for runtime calculation: 5,000 randomly selected frames. We
tested each network on two devices: an Nvidia 1080 GPU
and an Nvidia Jetson TX2. These results do not represent
the maximum inference speed possible, as no platform-

Model FPS(GPU) FPS(TX2)

SSD(MobileNetv2) 50 9
SSD(MobileNetv3-Small) 52 9
SSD(MobileNetv3-Large) 51 8
YOLOv4 50 5
YOLOv4-Tiny 88 35
LSTM-SSD 73 19

TABLE III: Frames per second for inference.

Fig. 7: The source of false negative errors in different models.

specific optimization was done, but they provide a guide to
the applicability of these networks in embedded contexts,
on board AUVs. While the SSD variants achieve relatively
high framerates on embedded devices, the clear standout is
YOLOv4-Tiny, which achieves real-time performance with
accuracy closer to other methods. LSTM-SSD also performs
quite well, surpassing the traditional SSD variants.

E. Failure Scenarios

When considering a diver detector for use on an AUV,
there is information of interest beyond accuracy, stability, and
efficiency: when and why the detector fails. By inspecting
the instances of false negative detections, we can gain some
intuition on the circumstances of detector failures in the diver
detector task. A significant portion of false negatives stem
from one of two cases: divers not fully in the frame, or diver
occlusions, as shown in Figure 7. We define a diver as not
fully in the frame if an edge of their ground truth bounding
box is on the edge of the frame. We define a diver occlusion
as two ground truth bounding boxes with an IOU above 0.

VII. CONCLUSION

In this paper, we address some challenges we have faced
in deploying object detectors onboard AUVs to detect divers.
First, we create VDD-C̄, a large dataset of annotated videos
of divers that presents divers at a variety of translations and
orientations. We show that our dataset improves the quality of
detection results significantly, while simultaneously provid-
ing a stronger challenge in the test set. In terms of precision
and efficiency results, we reproduced previous work, showing
that SSD and YOLO networks have similar AP and mobile
inference runtimes, though LSTM-SSD outpaces all but
Tiny-YOLO for mobile inference. Critically, we also evaluate
models on their temporal stability, since consistent detections



are important for several robotic applications. We found that
while SSD models generally had an edge over YOLO models
in terms of AP, YOLO models had better detection stability
in terms of fragmentation error and scale and aspect ratio
error. In particular, SSDs had more than double the frag-
mentation error of YOLO models. This suggests that those
whose work depends on consistent detections across frames
may wish to evaluate vision models on stability metrics in
addition to traditional metrics. Lastly, we recommend further
exploration of video object detection methods for future
work. While LSTM-SSD did not outperform other models in
terms of accuracy, its low inference times and high stability
reveal the potential benefits of video object detection for
robotic applications.
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