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Realtime Multi-Diver Tracking and Re-identification
for Underwater Human-Robot Collaboration
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Abstract— Autonomous underwater robots working with
teams of human divers may need to distinguish between
different divers, e.g., to recognize a lead diver or to follow
a specific team member. This paper describes a technique
that enables autonomous underwater robots to track divers
in real time as well as to reidentify them. The approach is
an extension of Simple Online Realtime Tracking (SORT) with
an appearance metric (deep SORT). Initial diver detection is
performed with a custom CNN designed for realtime diver
detection, and appearance features are subsequently extracted
for each detected diver. Next, realtime tracking-by-detection
is performed with an extension of the deep SORT algorithm.
We evaluate this technique on a series of videos of divers
performing human-robot collaborative tasks and show that
our methods result in more divers being accurately identified
during tracking. We also discuss the practical considerations of
applying multi-person tracking to on-board autonomous robot
operations, and we consider how failure cases can be addressed
during on-board tracking.

I. INTRODUCTION

The state of the art in multi-person visual tracking has
greatly improved in both speed and accuracy in recent
years [1]-[3]. These improvements make multi-person track-
ers viable for use on realtime robotic platforms. However, uti-
lizing multi-person tracking algorithms onboard autonomous
robots, particularly in adverse conditions, is still an under-
explored area [4]. In this paper, we propose a realtime multi-
person tracker suitable for autonomous underwater robots.

This work was motivated by the need for underwater
robots to distinguish between different human ‘teammates’
in order to improve underwater human-robot collaboration.
Underwater robots are utilized for a wide range of tasks,
including data collection, ecological mapping, and wreck
investigations (e.g., [5]-[7]). These tasks frequently require
collaboration between robots and human divers. When the
robot collaborates with a team of divers, it is highly useful for
the robot to be able to identify different divers: for example,
the robot may need to follow a specific diver or to recognize
a lead diver from whom to take instructions.

In order to distinguish between different divers, the robot
must continually detect divers who are present in images re-
ceived from its cameras. The robot must also have a method
to “identify” detections; that is, the robot must keep track of
each person it has seen and determine whether a detection
corresponds to one of those people. This is analogous to
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Fig. 1: Two divers collaborating with an underwater robot.
It is desirable for the robot to be able to uniquely identify
its human partners; however, the divers’ similar gear and the
poor visibility conditions underwater make this difficult.

the multi-object tracking (MOT) problem, which has been
extensively studied in computer vision.

Most MOT research has focused on tracking pedestrians
[1]-[3]. In this work, we adapt these pedestrian-focused
strategies for use in an underwater human-robot collaboration
scenario. In particular, this involves shifting the tracker’s
focus from tracking many people that come and go through-
out a crowded scene, to tracking a small group of people
that may leave the robot’s field of view for an arbitrary
period of time, but remain in the scene indefinitely. Also,
human body postures are predominantly in a horizontal
orientation during the diver tracking scenario, which is not
the case for pedestrians. Our tracking problem has some
difficulties that are not present in the typical pedestrian
tracking scenarios: there is the inherent difficulty in detecting
divers (see Section II for a discussion), as well as the
difficulty in distinguishing between two divers given the poor
visibility conditions underwater and similarities in divers’
SCUBA gear (see Figure 1). However, in our problem we
only need to track a few divers at a time, whereas typical
MOT sequences contain dozens of people in a given frame.

Our approach is tracking-by-detection, which is the current
leading MOT paradigm. In tracking-by-detection, the tracker
first performs person detection on each image. The tracker
aims to match each of these detections to the correct track,
where each track represents a unique person. Each track
typically models the person’s trajectory and/or appearance in
order to assist the tracker in matching detections to tracks.

Our method is an extension of Simple Online Realtime
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Fig. 2: Exemplary output of our tracker on an underwater
scene with multiple divers present. Two divers are detected
and determined to belong to tracks “1” and “3.”

Tracking with an appearance metric (deep SORT), a tracker
that runs in real time and performs well on standard tracking
benchmarks. We extend this technique to use a custom
diver appearance metric, to allow tracks to persist even
after arbitrarily long absences, and to recover from certain
reidentification errors.

Specifically, this paper contributes the following:

e A multi-diver tracker that can run on a realtime robotic
platform.

e An adaptation of the traditional multi-person track-
ing strategies, which focus on transient pedestrians in
crowded scenes, to a strategy that focuses on tracking
people who are always present in the scene (although
they may not always be present in the robot’s field of
view).

o Evaluation of the proposed tracker on a diverse set
of scenarios, including several that depict authentic
underwater human-robot collaboration.

II. RELATED WORK

Distinguishing between different divers is typically a
difficult task due to low in-class feature diversity: images
of different divers are often highly visually similar, both
because of similar wearables (e.g., SCUBA gear) and poor
visibility conditions underwater. The authors’ previous work
includes a first-of-its-kind method to identify divers via k-
means clustering on hand-crafted feature vectors [8]. The
current research extends this work to an online method that
can track and uniquely identify divers, utilizing a MOT
approach.

MOT has been extensively studied in computer vision.
Most research in the area has focused on tracking pedestrians
[1]-[3], [9], and the annual MOT challenges primarily con-
sist of pedestrian datasets [1], [10]. We refer the interested
reader to [2] for a thorough review of the field.

Many high-performing trackers process images in batches,
rather than online, which makes them infeasible for realtime
use [11]-[13]. Additionally, many of these trackers use
computationally-intensive techniques such as optical flow
analysis [14], [15] and Multiple Hypothesis Tracking (MHT)
[12] which increase tracker accuracy at the cost of processing
speed. This phenomenon is illustrated by the leaderboard for
the Conference on Computer Vision and Pattern Recognition

(CVPR) 2019 MOT Challenge [10]. Only one of the three
most accurate submissions has a tracking component that
runs at more than two frames per second (the processing
time for the detection component is not reported).

In contrast, the fastest trackers rely on relatively simple
yet robust heuristics, while still achieving reasonable accu-
racy. Many of these realtime trackers do not take people’s
appearances into account, and instead match detections to
tracks solely by analyzing the locations of the detections.
For example, the Intersection Over Union (IOU) Tracker [16]
matches a detection to a given track if there is a sufficiently
high IOU between the detection bounding box and the track’s
bounding box in the previous frame. Simple Online Realtime
Tracking (SORT) [17] is a slightly more complex model
that uses a Kalman filter [18] to model people’s motions
and predict their next location. SORT matches detections to
tracks if there is a sufficiently high IOU between a detection’s
bounding box and the track’s predicted bounding box. While
these techniques are reasonable for tracking pedestrians,
they are not able to reidentify a person after he or she is
temporarily occluded. This shortcoming was addressed by
deep SORT [19], which extends SORT to also use a deeply-
learned appearance metric [20] to improve reidentification
after occlusions. This work extends deep SORT further to
improve reidentification after longer occlusions or absences,
as well as customizing the appearance metric for diver
reidentification.

Reidentification in visual tracking is closely tied to the
more general person reidentification (i.e., reID) problem.
The basic reID problem can be formulated as a task to
compare persons of interest appearing in ‘query’ datasets
to a ‘gallery’ of potential candidate images, captured from
different angles, different cameras and even different scenes.
Existing work focuses almost exclusively on person retrieval
on land, which are either image-based or video-based. Person
reID methods often use visual cues based on the individual’s
height, face, complexion, and gait [21], [22]. However, these
methods are not reliable in situations where face or gait
recognition is not feasible (e.g., for poor image resolution,
or in images captured from different angles). Gheissari et
al. propose a novel method [23] which relies on features
invariant to illumination, pose, and dynamic appearance
of clothing [23]. Recent contributions increasingly rely on
deep machine learning (e.g., [24]-[27]) for their improved
accuracy in the reID task, although most are not realtime
capable.

Detection is another crucial component of tracking-by-
detection systems. Diver detection is a difficult problem,
largely because underwater visual perception presents var-
ious challenges, including color distortion, suspended par-
ticles, and light refraction, absorption, and scattering [28],
[29]. (Methods to correct these underwater visual artifacts,
e.g., [30], [31], are not feasible for this application due to its
realtime constraints.) Additionally, divers have a wider range
of potential positions and orientations than people on land,
since divers are suspended in a 6-DOF aquatic environment.
Islam et al. [32] design a CNN-based realtime-capable diver
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detection model while sacrificing relatively little accuracy.
We use this model for the detection component of our
tracker.

III. METHODOLOGY

Our algorithm keeps a set of all known tracks, denoted
as T. After finding detections with the network described in
[32] for a given frame, the algorithm attempts to match each
detection to an existing track ¢ € 7. Below we describe how
the algorithm makes these matches.

A. Intersection Over Union

Our algorithm first checks to see if any detections can
be matched to tracks via intersection over union (IOU). We
begin with this strategy because simple IOU trackers can be
very effective [16], and IOU can be computed quickly. We
use the following definition for the IOU between bounding
boxes A and B:

ANB
IOU(A,B):ADB

Our IOU-assignment procedure is as follows: We have
a set of detections D; that contains all detections found at
time t. We then calculate the IOU between each d; € D, and
each d; € Dy_;. If IOU(d;,d;) > 0.75, d; is assigned to
the same track as d;. This is a more conservative threshold
than the 0.5 threshold used by the IOU tracker [16], since
the IOU tracker uses batch processing to eliminate erroneous
associations and we process each frame sequentially.

B. Appearance and Location Metrics

To match the remaining detections to tracks, we utilize two
metrics: an appearance metric that describes the similarity
of a detection’s appearance and a track’s appearance, and
a location metric that describes the similarity between a
detection’s location and a track’s location.

The location metric uses a Kalman filter to model the
motion of each track and is analogous to the approaches
in [20] and [17]. Our tracking scenario is defined over the
four-dimensional state space (z,y,Z,y) where (z,y) is the
bounding box’s center position in image coordinates and
¢ and y are the respective velocities of z and y. We do
not include the area or aspect ratio of the bounding box in
the state space because due to rapid arm and leg motion
from swimming strokes, the aspect ratio and area of a
diver’s bounding box can oscillate rapidly (see Figure 3 for
an illustration of this effect). The location metric between
detection d; and track t¢; is then defined as the squared
Mahalanobis distance between the Kalman filter’s predicted
location of t; and the actual location of d;.

The appearance metric differs from approaches used by
other trackers. We calculate a series of hand-crafted features
to find a feature vector that describes the appearance of the
detected diver. In contrast, most trackers use a deep neural
network trained on a person reidentification dataset to gen-
erate feature vectors (e.g., [20], [33], [34]). We do not take
this approach for two reasons: (a) networks trained on person
reidentification datasets are not well-suited to reidentifying

Fig. 3: An illustration of how the area and aspect ratios of
bounding boxes can oscillate rapidly during swimming.

divers [35], and (b) diver-specific reidentification datasets do
not exist and data scarcity prevents us from creating one.

The appearance features we extract and the reasoning
behind their inclusion are fully described in [8]. In summary,
we use features that can satisfactorily differentiate between
divers, but are also relatively robust to changes in both
lighting and in diver position and orientation:

o Average color distribution in the LAB color space
o Amplitude of the spatial frequency distribution

o Shape approximation through image contours

o Shape approximation through convex hull

+ Hu image moment invariants [36]

These features have been shown to be sufficient for the
k-means algorithm to effectively cluster images of divers
according to their identities [8].

We take the same approach as [19] for calculating appear-
ance similarities between tracks and detections: the tracker
stores the normalized feature vectors of each track’s 100
most recent matched detections. To measure the appearance
similarity between a detection and a track, we find the cosine
similarities between each of the track’s stored feature vectors
and that detection’s normalized feature vector. The smallest
of these cosine similarities is then the appearance similarity
between the track and detection. Concretely, if detection d;’s
normalized feature vector is f;, and F; is the set of stored
normalized feature vectors for track ¢;, then the appearance
similarity between d; and ¢; is calculated with:

Simappearance(divtj) = min(l - f?f.? | fj S f])

C. Matching Detections to Tracks

Next, we must use the location and appearance metrics
to match the remaining detections to tracks. We use the
classic strategy of formulating an assignment problem that
can be solved with the Hungarian algorithm [37]. This
is done by finding a cost, ¢;; for matching detection d;
to track t;. We let ¢;; = SiMappearance(ds, ;). Because of
poor visibility underwater and strong resemblance between
divers’ SCUBA gear, sometimes a detection is highly vi-
sually similar to more than one track. In this case, we
introduce the location similarity as a tie-breaker and have
Cij = SiMappearance(di, t;) + SiMigcation(di, ;) for all costs
associated with that detection. The Hungarian algorithm then
finds the optimal matches between detections and tracks such
that the costs are minimized.

We do not rely heavily on the location similarity to
contribute to the cost of a match. This is because the
location similarity is derived through a Kalman filter, which
is designed to model linear systems [18]. Since divers’
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Fig. 4: An example of our identity recovery technique. (4a) This swimmer is being tracked with idengifgy “2. (4b-4c) When
the swimmer descends, bubbles partially occlude the body and the detector fails. (4d) Once the bubbles begin to clear, the
change in body position means that the tracker does not find enough appearance similarity to correctly match this detection
to track “2.” Instead a new track “1” is created. (4e) Since “1” is a new track, the algorithm continually checks for sufficient
similarities between “1” and tracks that have not been seen since “1” appeared. (The red colored bounding box indicated
that the tracker is uncertain about this track’s identity.) (4f) The algorithm finds a sufficient amount of similarity between
new track “1” and old track “2.” Track “1” is merged into “2”, and the swimmer’s appropriate identity is recovered.

movements are not consistently linear, we cannot highly
depend on Kalman filter predictions. In addition, the robot’s
exact motions (and by extension the camera’s exact motions)
are unknown, which also negatively affects the Kalman
filter’s predictive power.

However, the Kalman filter can be useful for determining
which matches between detections and tracks are unaccept-
able. We consider matches between detections and tracks
to be unacceptable if the detection’s location is too far
away from the track’s predicted location (i.e., if the location
metric is above a certain threshold), or if the detection’s
appearance is too dissimilar from the track’s appearance
(i.e., if the appearance metric is above a certain threshold).
The thresholds used for unacceptable matches were found
empirically by testing our algorithm on a validation dataset.
We used 25 for the location metric threshold and le—4 for
the appearance metric threshold.

We indicate an unacceptable match by setting ¢;; = 0.
If a detection cannot be matched to a track with a cost ¢ <
00, we create a new track for that detection. To account for
spurious detections, new tracks are not officially included in
T until they have been matched with a detection for three
consecutive frames.

D. Short Term vs. Long Term Reidentification

When a detection is not matched to a track for a frame, the
track is no longer active. If a person belonging to an inactive
track is detected, the person will need to be reidentified, i.e.,
matched to their existing track.

Our algorithm can accomplish reidentification if the detec-
tion’s appearance is similar enough to the inactive track and
its location is similar enough to the inactive track’s predicted

location. However, our algorithm changes its approach for
tracks that have been inactive for a longer period of time (i.e.,
more than five frames). In this case, we no longer calculate
a predicted track location, because the track’s Kalman filter
will have too much uncertainty and propagated error. We
also increase the appearance similarity threshold slightly, to
5e—4. This is because when a person is absent from the
scene for a longer period of time, there may be significant
changes to their position and orientation, as well as the
scene’s lighting, so we adopt a more forgiving threshold.
The threshold was also obtained empirically by testing our
algorithm on a validation dataset.

E. Identity Recovery

One potential problem with our reidentification technique
is that we must correctly reidentify a diver on the first frame
in which he or she reenters the robot’s field of view. If,
in that initial frame, the diver’s position or a temporary
partial occlusion leads to a high dissimilarity between the
detection’s appearance metric and the diver’s true track, the
diver will not be assigned to their true track. We refer to this
scenario as a missed reidentification.

Missed reidentifications are not generally a large concern
in the MOT community, and the standard MOT evalua-
tion metrics do not heavily penalize missed reidentifica-
tions. However, for our use case, missed reidentifications
are hugely problematic since they lead to the robot being
mistaken about a diver’s identity. To address this problem,
we have implemented a procedure to correct missed reiden-
tifications.

The process is as follows: after the algorithm matches
detections to tracks, it examines the set of new tracks. We
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consider a track to be “new” if it has existed for 15 or fewer
frames. For each new track t;, the algorithm finds the set
of tracks that have not been seen since t; was created. We
consider this set to contain all tracks that could possibly
belong to the same person represented by ¢;.

Next, the algorithm checks to see if ¢; does in fact
represent the same person as another track t;. To do this,
we find the cosine similarity between each feature vector
stored for ¢; and each feature vector stored for ¢;. If more
than 25% of these cosine similarities are below our accept-
able appearance similarity matching threshold, the algorithm
decides that ¢; and ¢; share an identity. (Again, this threshold
was established empirically through testing on a validation
dataset.) Then track ¢; is merged into ¢;. See Figure 4 for
an illustration of this technique in practice.

IV. EXPERIMENTS

We evaluate the performance of the proposed tracker by
testing it on eight videos, six of which take place in open
water (i.e., ocean) environments, and two of which take place
in closed water (i.e., pool) environments (see Table II). The
six ocean videos were all recorded during field trials and thus
represent authentic underwater human-robot collaboration
scenarios. The two pool videos were recorded to simulate
human-robot collaboration scenarios. Each video contains
between two and four divers, and the videos are about
10 minutes long in total. The ground truth identities and
bounding boxes for each video were annotated by hand.

mmm SORT
m deep SORT
B diver SORT

60

50 A

40 4

IDF1

30 A

20 A

10 A

1 2 3 4 5 6 7 8
Sequence No.

Fig. 5: A comparison of the IDF1 metric across all eight
scenarios for the three trackers tested.

We compare our tracker’s performance to SORT and
deep SORT to ensure that our modifications result in better
tracking for underwater human-robot collaboration scenarios.
The SORT method does not incorporate any appearance
information, whereas deep SORT uses a CNN trained on
the MARS person reidentification dataset [38]. Table II
contains a summary of the three trackers’ performances on
our eight videos. All trackers used our custom diver detector
to generate detections (note that the detector’s performance is
also included Table II). We then used standard MOT metrics

Metric

DP Detection Precision. Defined as TP/(TP + FP) where TP
is a true positive (i.e., a detection that closely matches a
ground truth bounding box) and FP is a false positive (i.e., a
detection that does not closely match a ground truth bounding
box). All trackers used the same detector.

DR Detection Recall. Defined as TP/(TP + FN) where TP is a
true positive detection and FN is a false negative detection
(i.e., a ground truth bounding box that does not closely match
any detection). All trackers used the same detector.

IDF1 Identity F1. Harmonic mean of IDR and IDP.

IDP Identity Precision. Defined as IDTP/(IDTP + IDFP) where
IDTP is the number of true positive identities (i.e., identities
output by the tracker that match ground truth identities)
and IDFP is the number of false positive identities (i.e.,
identities output by the tracker that do not match ground
truth identities) in the tracker’s output.

IDR Identity Recall. Defined as IDTP/(IDTP + IDFN) where
IDTP is the number of true positive identities, IDFP is the
number of false positive identities, and IDFN is the number
of false negative identities.

Description

IDS Identity Switches. The total of number of times that a tracked
trajectory changes its matched ground truth identity.

FM Fragmentations. The total number of times a tracked trajec-
tory is interrupted (i.e., frames are dropped).

TABLE I: Description of MOT metrics used in evaluation.
See [39], [40] for more detailed discussions.

[39] to evaluate how well the different trackers identify
divers; see Table I for a brief description of the metrics.

Across all eight videos, our tracker performed best in
correctly identifying detected divers as measured by IDF1
(Figure 5), IDP, and IDR. This indicates that our reiden-
tification and identification recovery methods are effective.
Since our tracker specifically outperforms deep SORT, the
results also indicate that deeply learned person reidentifica-
tion appearance metrics fall short of the hand-crafted features
used by our tracker. However, deep SORT does consistently
outperform SORT on identification, so the deeply learned
appearance metric is not ineffective.

Our tracker had no improvement over the others on
identity switches and fragmentations: at best, our tracker had
marginally fewer identity switches (e.g., sequences 2 and
5 in Table II); otherwise, it was not a top performer. Our
tracker also consistently had the most fragmentations, likely
because our tracker persists track identities even through long
occlusions or periods of absence. In some cases, such as
Scenario 1, the baseline SORT tracker had extremely low
IDS and FM scores. This was due to SORT only matching
a few detections to tracks, and each track lasting for only
1-2 frames. Such tracks are too short to experience identity
switches and fragmentations.

It is also important to note that there was a wide range
for IDF1, IDP, and IDR values across the eight videos.
Additionally, there is a strong relationship between those
values and the detector’s performance. For example, video
7 resulted in the best detector performance, as well as our
tracker’s best IDF1 score (64.9). On the other hand, video
6 resulted in our detector’s worst performance and also
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Scenario Location  Exemplar DP1 DR 1  Tracker IDF1 1+ IDP1T IDRYT IDS| FMJ
SORT 2.0 28.6 1.0 0 0
1 ocean 49.7 387 deep SORT 17.9 20.5 15.8 22 25
diver SORT 27.7 39.3 214 7 19
SORT 11.1 57.1 6.2 1 1
2 ocean 59 359 deep SORT 26.9 359 21.5 3 7
diver SORT 60.4 78.0 49.2 0 8
SORT 2.6 4.9 1.3 0 0
3 ocean 645  49.1 deep SORT 21.1 24.4 18.5 24 29
diver SORT 27.6 41.6 20.7 15 27
SORT 154 25.3 11.1 11 25
4 ocean 62.7 372 || deep SORT 27.2 36.6 21.7 16 26
diver SORT 33.6 46 26.5 19 46
SORT 304 422 23.8 23 63
5 ocean 70.7 547 deep SORT 34.1 39.2 30.3 30 80
diver SORT 49.2 58.6 424 19 92
30.5 25 SORT 9.8 12.9 7.9 15 37
6 ocean deep SORT 13.4 15.4 11.9 9 37
diver SORT 24.5 28.4 21.5 10 53
60.3 SORT 19.2 27.7 14.7 25 43
7 pool deep SORT 49.3 58.1 42.8 14 53
diver SORT 64.9 80.0 54.6 17 65
632 258 SORT 314 68.6 20.3 2 13
8 pool deep SORT 26.6 46.3 18.6 4 15
diver SORT 374 51.9 29.2 12 26
SORT 18.6 29.6 13.6 77 182
ALL deep SORT 30.0 36.3 255 122 272
diver SORT 4.1 53.1 34.9 99 336

TABLE II: A comparison of our algorithm’s performance (diver SORT) and two other realtime trackers’ performance on
several videos of divers. See Table I for a brief description of the metrics used.

our tracker’s worst IDF1 score (24.5). We found a positive
correlation between detection precision and identity precision
for both our tracker (Pearson r = 0.727,p < 0.05) and deep
SORT (Pearson r = 0.850,p < 0.05). This is unsurprising
since detection quality is known to have a high impact on a
tracker’s performance [2], [17], [40].

Our tracker’s end-to-end image processing rate is 9.8
frames per second on a machine with an AMD Ryzen 5
2600 3.9GHz processor and 16GB of RAM, with 416 x 416
images, making it realtime capable for AUV deployment.

V. CONCLUSION

In this paper, we propose a method to allow underwa-
ter robots to track and identify people in real time. Our
method combines techniques from multi-object tracking and
underwater diver detection and identification. Results show
that our custom tracker has more correct identifications than

baseline realtime trackers on underwater datasets. However,
in situations where the detector produces highly inaccurate
detections, all tested trackers perform poorly. This has two
implications: (1) improving our detector can result in sig-
nificant tracking improvements, and (2) the tracker has the
potential to be highly unreliable in the field when adverse
conditions reduce detection accuracy. In such situations, the
erroneous tracker output could lead to erratic and unpre-
dictable robot behavior, which may jeopardize the mission.
Future work therefore involves improving realtime diver
detection and developing a system that can flag poor de-
tector performance (e.g., dropping many frames, inconsistent
numbers of detections between frames). When poor detection
conditions are identified, the humans working with the robot
can be made aware that the robot’s tracking module should
not be relied upon.
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