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Abstract— Mobile robots in unstructured, mapless environ-
ments must rely on an obstacle avoidance module to navigate
safely. The standard avoidance techniques estimate the locations
of obstacles with respect to the robot but are unaware of
the obstacles’ identities. Consequently, the robot cannot take
advantage of semantic information about obstacles when mak-
ing decisions about how to navigate. We propose an obstacle
avoidance module that combines visual instance segmentation
with a depth map to classify and localize objects in the
scene. The system avoids obstacles differentially, based on
the identity of the objects: for example, the system is more
cautious in response to unpredictable objects such as humans.
The system can also navigate closer to harmless obstacles and
ignore obstacles that pose no collision danger, enabling it to
navigate more efficiently. We validate our approach in two
simulated environments: one terrestrial and one underwater.
Results indicate that our approach is feasible and can enable
more efficient navigation strategies.

I. INTRODUCTION

An autonomous robot navigating an unstructured, mapless
environment typically avoids obstacles by utilizing range
information received from its sensors. When a danger of
collision arises, the robot adjusts its trajectory to ensure
safety. The state-of-the-art techniques in obstacle avoidance
effectively prevent collisions, but they are unaware of the
semantic properties of the obstacles they are avoiding [1].
Consequently, they are unable to exploit a more in-depth
understanding of the objects in the environment to navigate
more efficiently without compromising safety. In this paper,
we augment an obstacle avoidance module’s capabilities by
incorporating semantic information and show experimentally
that this results in more efficient navigation. We refer to this
augmentation as Semantic Obstacle Avoidance for Robots
(SOAR).

Semantic information is often used to aid robot navigation
in structured environments [2], [3]. In this work, we propose
that semantic information can also be useful for obstacle
avoidance in unstructured environments. For example, a
robot may want to consider that a living thing, like a person
or a dog, has the potential to start moving, even if it is
currently stationary. The robot may also want to consider that
some obstacles may not actually pose a collision danger: for

The authors are with the Department of Computer Science
and Engineering, Minnesota Robotics Institute, University of
Minnesota–Twin Cities, 100 Union St SE, Minneapolis, MN,
55455, USA. {1jungseok,2dento019,3wyeth008,
4walas013,5junaed}@umn.edu.

*This work was supported by the US National Science Foundation awards
IIS-#1637875 & IIS-#1845364, the UMII-MnDRIVE Fellowship, the MnRI
Seed Grant, and Nvidia GPU Grant.

Fig. 1: Four levels of scene understanding in underwater
human-robot collaborative missions, shown top-to-bottom,
left-to-right: observation with no understanding (RGB im-
age), distance-aware observation without scene understand-
ing (depth estimation), instance-aware scene understanding
(instance segmentation), and depth-instance-aware scene un-
derstanding (depth-instance segmentation). We propose a
depth-instance-aware approach for obstacle avoidance.

instance, a depth map may detect plastic balls in the robot’s
direction of motion, but the robot can safely collide with
the balls. When the robot is able to recognize that different
objects pose different collision dangers, it can choose a path
that maximizes efficiency without jeopardizing safety. In fact,
semantic obstacle avoidance is desirable in several robotic
applications with unstructured environments, including:

• Robotic wheelchairs need to generally stay clear of
obstacles, but they may want to give extra clearance to
objects like doors that have the potential to suddenly
swing forward. On the other hand, if the user wants to
dock at a table, the wheelchair needs to allow itself to
get very close to it.

• Autonomous underwater vehicles (AUVs) are em-
ployed by marine biologists to observe endangered
species of mussels, which are usually embedded within
rock formations, requiring AUVs to get much closer.

• Diver-following AUVs need to avoid obstacles while
recognizing bubbles emanating from the diver’s flippers
do not actually pose a collision danger.

It is imperative to note that even if a map of the envi-
ronment is available, the presence of dynamic objects (e.g.,



Fig. 2: Illustration of our obstacle avoiding approach which
fuses depth and semantic information for selective avoidance.
The input is a pair of stereo images, which is used to both
compute disparity and, through YOLACT, generate semantic
labels for obstacles in the scene. Fusing these, a robot
has both depth estimates and semantic information about
potential obstacles, enabling it to select navigation strategies
depending on the nature of the obstacle.

in the above scenarios, people, wheelchairs, and fish) will
require information beyond the “free-and-occluded” labels
that are usually provided by maps. Semantic maps [2]
and semantic scene understanding [4], [5], [6], [7] may
provide additional information, but they would not account
for dynamic objects in the environment. For field robots,
particularly in sensory-deprived environments (e.g., under-
water), such maps are often nonexistent, and real-time scene
understanding is still an open problem.

SOAR uses instance segmentation, which identifies spe-
cific object instances for each pixel in the visual scene,
and fuses it with depth (i.e., distance) information to pro-
vide semantically-aware obstacle information to obstacle
avoidance modules. We adopt YOLACT [8] as the instance
segmentation module for our pipeline, as shown in Fig.
2, because it is the first state-of-the-art model to run in
real-time with reasonable accuracy. While useful, object
detection is not appropriate for this task as bounding boxes
generated by these algorithms will contain spurious infor-
mation from scene background and other objects. While
semantic segmentation approaches are useful, they do not
discriminate between object instances, and this information
is needed for the proposed approach of semantically-aware
object avoidance.

In this paper, we make the following contributions:

• Propose a pipeline for combining depth estimation and
instance segmentation for semantic obstacle avoidance,

• Develop a semantically-aware obstacle avoidance algo-
rithm to keep flexible distances from objects,

• Create an instance segmentation dataset of underwater
obstacles to train an instance segmentation model, and

• Demonstrate the efficiency of the proposed pipeline in
both underwater and terrestrial simulated environments.

II. RELATED WORK

A. Instance Segmentation

Research in object detection has studied models to im-
prove accuracy while keeping real-time inference speed since
the appearance of YOLO [9], one of the first real-time object
detection models. However, instance segmentation poses
more complex challenges, and achieving good accuracy in
real-time has been difficult. FCIS [10] is the first end-to-end
CNN-based model for instance segmentation. It is built on R-
FCN [11] and utilizes position-sensitive inside/outside score
maps to generate instance segmentation proposals. Mask R-
CNN [12], which is an extension of Faster R-CNN [13],
performs segmentation in a two-stage process by generating
Region of Interest (RoI) proposals first and then creating
a mask based on the RoI from the first stage. PANet [14]
improves the accuracy of segmentation from Mask R-CNN
by enriching information propagation. MS R-CNN [15]
outperforms Mask R-CNN by adding a MaskIoU head to
align the scores of the masks. Although the aforementioned
models show accurate results, their two-stage-based struc-
tures make real-time instance segmentation infeasible. In
order to overcome the structural problem, YOLACT [8]
conducts two predictions in parallel: mask prototypes and
per-instance mask coefficients. Then, the predictions are
combined linearly to yield masks. This allows a single-stage
structure and inference in real-time with reasonable accuracy.

B. Obstacle Avoidance

Obstacle avoidance, unsurprisingly, has seen significant
development (e.g., [16], [17], [18]) given its importance in
safe robot navigation. Here, we focus specifically on sensor-
based approaches where no information about the environ-
ment is available beyond what is received from sensors (see
[1] for a complete discussion). Sensor-based approaches typ-
ically plan a short-horizon trajectory at every time step [19],
[20]. A classic obstacle avoidance technique is the Artificial
Potential Field, first proposed by [21]. This technique assigns
artificial repulsive fields to obstacles and attractive fields
to goals, thereby guiding the robot toward a goal while
simultaneously avoiding obstacles. Other approaches include
vector field histograms (VFH) [22], receding horizon control
[23], and Voronoi diagrams [24].

Most obstacle avoidance that incorporates semantic infor-
mation is focused on developing socially-aware responses
to human obstacles, e.g., [25], [26], [27]. Similar to our
approach, [26] instructs the robot to avoid humans more
than inanimate objects. However, their work is focused on
path planning in mapped environments and uses model-based
methods to estimate the human’s location.

Another approach for obstacle avoidance in marine
robotics, based on conditional imitation learning, is presented
in [18]. This approach uses data collected from expert users
to learn what navigational action to take given an input
image, but does not explicitly model different behaviors for
different types of obstacles.




